
 1

Gedae Primitive Function
Reference Manual

June 25, 2008

Address: Gedae, Inc.
 1247 N Church St, STE 5

 Moorestown, NJ 08057
Telephone: (856) 231-4458
FAX: (856) 231-1403
Internet: www.gedae.com

http://www.gedae.com/

 2

Contents
Contents .. 2

Style Guide.. 5

Built-in Functions .. 6

amount ... 8

avail .. 12

consume .. 14

decode ... 16

dirty .. 18

drain ... 20

draining .. 22

encode ... 23

mem_type ... 24

n_dests .. 25

peek ... 26

post ... 28

produce ... 29

produce_ptr ... 31

push .. 33

segment ... 36

set .. 40

set_ptr ... 42

size .. 44

src_name .. 46

time ... 47

tokensize ... 48

Built-in Variables ... 50

firing ... 51

granularity ... 56

queues_ready ... 58

self_name.. 59

Trigger Primitive Save/Restore Functions .. 61

restore_int .. 62

 3

restore_double ... 64

restore_float ... 65

restore_string ... 66

save_int ... 67

save_double .. 68

save_float.. 69

save_string ... 70

Functions .. 71

embBoxName ... 72

embCalloc .. 74

embFClose.. 77

embFFlush ... 79

embFOpen.. 80

embFPrintChar ... 81

embFRead .. 82

embFScanChar .. 84

embFWrite ... 85

embFree.. 86

embNoteProgress .. 87

embGetPeriod .. 91

embGetPriority .. 92

embGetSchedule .. 93

embMemcpy .. 94

embName ... 95

embPause ... 96

embPrintChar .. 97

embProcStats ... 98

embResume .. 99

embSbAlloc .. 102

embSbFree ... 104

embSbCopy .. 106

embSbForward .. 108

embSbBytes.. 110

embSbType .. 111

embSelf ... 112

 4

embSetGranularity ... 113

embSetPeriod ... 114

embSetPriority .. 116

embSuspendQueueWait ... 117

embSuspendRetry ... 119

embTerminateError ... 121

embTerminateNormal .. 122

embUserEvent ... 124

embUserBeginEvent .. 127

embUserEndEvent .. 129

embUserFloatEvent .. 131

embUserIntEvent .. 132

embWallclock .. 133

Unmapped to Mapped Memory Transfer Functions .. 134

Data Flow Parameter Functions ... 138

part ... 139

sum ... 140

 5

Style Guide

In this document, the first use of any term appears in boldface font. Code, such

as

x[i] = a[i]+1;

appears in bold Courier font. Built-in functions and Gedae language extensions,

such as

Apply: {

 int i;

 amount(in,N);

 …

}

appear in bold blue Courier font. Gedae Run Time Kernel (RTK) library

functions, such as the embCalloc call below:

float *x = embCalloc(N,sizeof(float));

appear in bold green Courier font.

 6

Built-in Functions

The built-in functions of the Gedae Primitive Language are code-generated into

statements that obtain information or modify the state of input and output

identifiers. These functions always take an input or output identifier as one of

their arguments.

Consider the following example:

Name: add

Type: static

Input: {

 stream float a;

 stream float b;

}

Output: {

 stream float out;

}

Apply: {

 int N = size(a);

 int i;

 for (i=0; i<N; i++) out[i] = a[i]+b[i];

}

The argument a is an identifier to the built-in size function and its use as

identifier should be sharply distinguished from its use as an array of pointers in

the for loop. When not used as identifiers, input and output variable names,

such as a and out, refer to arrays of values of the base type. But when the

variable names are passed as arguments to built-in functions, they allow the

function to set the state and retrieve status information from the underlying input

and output data ports. In the example above, a[i] refers to the ith element of the

array a, but the built-in function size(a) is code-generated into the statement

_state->N_a.

The Gedae built-in primitive functions are described in the following sections.

This page describes the format of each function description.

Synopsis

The Synopsis section presents the calling syntax for the function including the

declarations of the arguments and the return type. For example:

returntype appFunction(type1 arg1, type2 arg2);

 7

The type specifiers can be any standard C data types or the type Identifier,

which refers to an input or output identifier.

Box Types

The Box Types section names the types of primitives that may use this function.

The types may include one or more of static, cyclic, eval or trigger.

Methods

The Methods section lists the methods that may use this function. The method

may be one or more of Init, Start, Reset, ClassReset, Apply,

Terminate, Destroy, Eval, Trigger, Save, or Restore.

Description

The Description section describes what the function does, what it returns and

what side effects it causes.

Examples

The Examples section shows simple examples of how the function is used.

Example Primitives

The Example Primitives section lists some representative primitives from the

Gedae Primitive Library that use the function.

See Also

The See Also section lists the primitive functions that are related to the function

being described.

 8

amount

Synopsis

int amount(Identifier id, int tokens);

Box Types

static

Methods

Apply

Description

The amount function specifies the data flow requirements (tokens) on a

nondet input or output identifier, id. For nondet inputs, tokens specify how

many tokens must be available. For nondet outputs, tokens specifies how much

space must be available. If the queue requirements are met, then the amount

function prepares the identifier id to be used and returns a nonzero value. If the

queue requirements are not met, then the amount function sets the identifier id to

zero, returns a value of zero and also sets the queues_ready flag to zero. It is

the responsibility of the primitive programmer to detect that the amount failed

by either checking its return value or checking the queues_ready flag.

Multiple calls to amount can be made before the queues_ready flag is

checked. If one or more amount calls fail, then the Apply method should exit

without executing its algorithm. After the Apply method exits the primitive

calling, it will be suspended and not called again until the data flow requirements

specified by the amount calls have been met. If any amount call fails during

processing of a segment of data that has an end-of-segment marker, then the failed

call causes the primitive to move to the end-of-segment state.

Examples

The first example shows how the amount function is used with non-family and

family inputs and outputs.

 9

Input: {

 nondet stream float in;

 nondet stream float [F]fam_in;

 int N;

}

Output: {

 nondet stream float out;

 nondet stream float [F]fam_out;

}

Apply: {

 int f;

 amount(in,N);

 amount(out,N);

 for (f=0; f<F; f++) {

 amount(fam_in[f],N);

 amount(fam_out[f],N);

 }

 if (queues_ready) {

 /* only progress if all amount calls succeeded */

 .. can reference

 in[0]..in[N-1]

 out[0]..out[N-1]

 fam_in[0][0]..fam_in[F-1][N-1]

 fam_out[0][0]..fam_out[F-1][N-1]

 }

}

The simplest primitive that uses amount is the ndet_copy, which copies its

nondet input to its static output.

Name: ndet_copy

Type: static

Input: {

 nondet stream float in;

}

Output: {

 stream float out;

}

Apply: {

 if (amount(in,granularity)) {

 e_vmov(in,1,out,1,granularity); /* vector move */

 consume(in,granularity);

 }

}

 1

0

In this example, because only one nondet queue is involved, the value returned

by amount can be checked directly using an if statement. When more than one

amount function is called, it is more convenient to check that they are all

successful using if(queues_ready).

The amount function will always succeed if it is called with avail(id) as the

number of tokens. If in the above example instead of calling amount(in,N) we

call amount(in,avail(in)), then the amount function is guaranteed to

succeed.

Note that it is always necessary to call the amount function as it serves both the

purpose of checking that the data flow requirements are met and preparing the

identifier to be accessed. The following code would cause a segfault:

int ain = avail(in);

if (ain) {

 /* segfaults even though there are tokens on in */

 float x = in[0];

}

The following code, which uses the amount function before the variable in is

dereferenced, corrects the problem.

int ain = avail(in);

if (ain) {

 float x,y;

 amount(in,ain); /* prepare in to be dereferenced */

 x = in[0];

 y = in[ain-1];

}

Note that there is no need to check the queues_ready flag in the above case as

the amount function will not fail if it is passed avail(in).

An example of a complete function that uses the amount is seen below:

Name: latch

Type: static

Input: {

 nondet stream float in;

}

Local: {

 int ready;

 float last_in;

}

Output: {

 1

1

 stream float out;

}

Include: {

#include <e_vfill.h>

}

Reset: {

 ready = 0;

}

Apply: {

 int ain = avail(in);

 if (ain) {

 amount(in,ain);

 last_in = in[ain-1];

 consume(in,ain);

 ready = 1;

 }

 if (ready) {

 int i;

 e_vfill(last_in,out,1,granularity);

 } else {

 amount(in,1);

 }

}

Example Primitives

embeddable/stream/logic/merge_c shows an example of how a

control stream can determine the amount that must be available on two

nondet input streams.

embeddable/stream/logic/umerge shows how an uncontrolled merge

can be implemented.

embeddable/stream/distribute shows how a nondet output stream can

be used to do dynamic load balancing.

See Also

queues_ready, avail

 1

2

avail

Synopsis

int avail(Identifier id);

Box Types

static

Methods

Apply

Description

The function avail has two different meanings depending on whether the

identifier is a nondet input or a nondet output dynamic data stream. For input data

streams, the avail function returns the number of available input tokens on the

input queue. For output data streams, the avail function returns the number of

tokens that may be written to the output stream.

Note that amount must be called on the nondet streams if the primitive needs

to access the data in the streams. If the return value from avail is passed to the

amount function, then the amount function is guaranteed to succeed.

Examples

The following example shows how the avail function is used with nonfamily

and family inputs and outputs.

Input: {

 nondet stream float in;

 nondet stream float [F]fam_in;

}

Local: {

 int fain[F];

 int faout[F];

}

Output: {

 nondet stream float out;

 1

3

 nondet stream float [F]fam_out;

}

Apply: {

 int i;

 int ain = avail(in); /* number of tokens on in */

 int aout = avail(out); /* space available on out */

 for (i=0; i<F; i++) {

 /* get number of tokens on each family input */

 fain[i] = avail(fam_in[i]);

 /* get available space on each family output */

 faout[i] = avail(fam_out[i]);

 }

 /* Process data based on availability of tokens

 on inputs and outputs */

 ...

}

Example Primitives

embeddable/stream/logic/umerge shows how an uncontrolled merge

can be implemented by checking availability on input queues.

embeddable/stream/distribute shows how a nondet output stream can

be used to do dynamic load balancing by checking availability on output

queues.

See Also

amount

 1

4

consume

Synopsis

void consume(Identifier id, int tokens);

Box Types

static

Methods

Apply

Description

The function consume notes how many tokens are to be consumed from a

dynamic input stream identifier, id. For any identifier, consume should be

called just once at the end of the function. The algorithm must keep a running

total of the number of tokens to be consumed and pass this number to the

consume function in the tokens variable. The identifier passed to the

consume function must be that of a dynamic or nondet input stream. The

consume function should not consume more tokens than are available in the

input stream.

Examples

For a dynamic input stream with a decimate rate set to D declared as:

dynamic stream in(D);

or

dynamic stream in; /* D is 1 by default */

the call to consume should not consume more than granularity*D tokens.

For a nondet input stream that has successfully met the requirement of an

amount function as:

amount(in,N);

 1

5

the consume function should consume no more than N tokens.

Example Primitives

embeddable/stream/logic/umerge shows how an uncontrolled merge

can be implemented by consuming only tokens available on the inputs.

embeddable/stream/logic/mergef_c shows how the number of tokens

consumed can be determined from a control input stream.

See Also

avail, amount, produce

 1

6

decode

Synopsis

void* decode(Identifier in, int *runlength, int

max_runlength);

Box Types

static

Methods

Apply

Description

The decode function returns successive run-length/value pairs of the input

encoded queue in. The value is returned as the return value of decode and the

run-length is returned in the runlength parameter. The returned value of the

runlength value never exceeds the value of max_runlength. On

completion of each call to decode, runlength tokens are consumed from the

encoded queue. If the encoded queue is empty, then the decode function returns

0 and sets the runlength to 0.

Examples

A data stream containing the values

1 1 1 1 2 2 2 3 3 3 3 3 4 4

can be encoded as run-length/value pairs as:

(4,1) (3,2) (5,3) (2,4).

given that a stream declared as

encoded stream int in;

has run-length/value pairs as described above. The code sequence that follows

describes the effect of successive calls to the decode function.

int *x;

 1

7

x = decode(in,&runlength,4);

/* at this point *x = 1, runlength = 4 and the queue is in state ((3,2) (5,3) (2,4) */
x = decode(in,&runlength,4);

/* at this point *x = 2, runlength = 3 and the queue is in state (5,3) (2,4) */
x = decode(in,&runlength,4);

/* at this point *x = 3, runlength = 4 and the queue is in state (1,3) (2,4) */

/* only 4 tokens were consumed from the runlength encoded value (5,3) */

/* leaving the value (1,3) at the head of the queue */
x = decode(in,&runlength,4);

/* at this point *x = 3, runlength = 1 and the queue is in state (2,4) */
x = decode(in,&runlength,4);

/* at this point *x = 4, runlength = 2 and the queue is empty */
x = decode(in,&runlength,4)

/* at this point x = 0 and runlength = 0 indicating the queue is empty */

Example Primitives

embeddable/stream/decode shows how an encoded stream can be

converted to a normal stream.

See Also

decode, encode, peek

 1

8

dirty

Synopsis

int dirty(Identifier id)

Box Types

trigger

Methods

Trigger

Description

The dirty function allows a trigger box to determine which trigger inputs were

pushed from upstream primitives, which in turn, causes the trigger box to execute.

The dirty function returns 1 if the identifier was pushed since the last call to the

trigger box. Otherwise, it returns 0.

Examples

Given a trigger box with inputs:

trigger int in1;

trigger int in2;

The trigger method can be written as:

Trigger: {

 if (dirty(in1)) {

 /* handle in1 */

 }

 if (dirty(in2)) {

 /* handle in2 */

 }

|

Example Primitives

discrete/integer/I_Sync2 – shows a trigger box that copies the two

inputs to the two respective outputs only after both of the inputs have been pushed

(made dirty) by the upstream primitives.

 1

9

See Also

push

 2

0

drain

Synopsis

void drain(Identifier id);

Box Types

static

Methods

Apply

Description

The drain function, when called on a nondet stream input identifier id,

declares that any tokens currently in the input queue or any new queues arriving

on the queue should be discarded until the beginning of the next segment of data.

The drain function allows primitives with nondet inputs to move to the end-

of-segment state, while tokens are still available on the input queue and before an

end-of-segment has been issued on the nondet input.

The drain function should not be called if the primitive has made any progress,

that is, produced data on dynamic outputs or filled in static outputs. The call to

drain should be postponed until the next execution of the primitives Apply

method.

Examples

Given that an input stream is defined as:

nondet stream float in;

then a primitive that determines that it doesn’t need to process any more data from

a segment can end the segment processing by calling:

drain(in);

 2

1

Example Primitives

test/segmentation/database – shows a database primitive that drains

its input queue (using the draining function) as soon as it detects that an end-of-

segment marker has been issued on its input stream.

See Also

draining

 2

2

draining

Synopsis

int draining(Identifier id)

Box Types

static

Methods

Apply

Description

The draining function returns the value 1 if an end-of-segment marker is on

the nondet input stream identifier id. Otherwise, it returns a 0.

Examples

Given an input stream declared as:

nondet stream float in;

a primitive can move to the end-of-segment state when an end-of-segment marker

is placed on the input queue by calling

if (draining(in)) {

 drain(in);

}

This code is primarily used to throw away tokens and is sometimes necessary

when an application has a variable amount of data and needs to meet latency and

throughput requirements.

Example Primitives

test/segmentation/database – shows a database primitive that drains

its input queue as soon as it detects that an end-of-segment marker has been

issued on its input stream.

See Also

drain

 2

3

encode

Synopsis

encode(Identifier out, void *value, int runlength)

Box Types

static

Methods

Apply, EndOfSegment

Description

The encode function places run-length/value pairs on an encoded stream. The

encoded stream is specified by the identifier out. The value and run-length

are specified by the value and runlength parameters.

Examples

Example Primitives

See Also

set_ptr, produce_ptr

 2

4

mem_type

Synopsis

char *mem_type(Identifier id)

Box Types

static

Methods

Start, Reset, Apply, Destroy, Terminate, EndOfSegment

Description

The mem_type function returns a character string that declares the type of

memory of the input or output identifier id. The return value is a string that is

either “default” or the value of a named memory type set by the user from the

Gedae Development Environment. The identifier memory is set in the

Development Environment by first partitioning the memory using the Group

Setting Dialog’s Partition Memory Dialog, and setting the partition to run in the

named memory block using the Set Schedule Parameter Dialog.

The memory type name returned can then be passed to the embCalloc,

embFree or the embSbAlloc functions. Passing the memory type to these

functions gives the Development Environment user the ability to control the

memory type that a primitive uses to do runtime memory allocation.

Examples

See Examples section of embSbAlloc.

See Also

embSbAlloc, embCalloc, embFree, n_dests

 2

5

n_dests

Synopsis

int n_dests(Identifier id);

Box Types

static

Methods

Start, Reset, Apply, Destroy, Terminate

Description

The function n_dests returns the number of destinations to which the output

identifier id is connected.

Examples

See Examples sections for the embSbAlloc, embSbForward and

embSbCopy functions.

See Also

mem_type, embSbAlloc, embSbForward, embSbCopy

 2

6

peek

Synopsis

void* peek(Identifier in, int *runlength, int index);

Box Types

static

Methods

Apply

Description

The peek function allows a primitive to examine the runlength/value pairs on the

encoded stream in without consuming them. The number of the runlength/value

pair to examine is passed in the index parameter. The index parameter is zero

based, that is, index == 0 retrieves the first runlength/value pair from the

queue. The runlength is returned in the runlength parameter, and a pointer to

the value is returned as the functions return value.

Examples

A data stream containing the values

1 1 1 1 2 2 2 3 3 3 3 3 4 4

can be encoded as the run-length/value pairs:

(4,1) (3,2) (5,3) (2,4).

Given that an input stream declared as

encoded stream int in;

and has run-length/value pairs as described above. The code sequence that follows

describes the effect of successive calls to the peek function.

int *x;

x = peek(in,&runlength,2);

/* at this point *x = 3 runlength = 5 */
x = peek(in,&runlength,0);

 2

7

/* at this point *x = 1 and runlength = 4 */

Example Primitives

embeddable/stream/logic/emerge – shows how the encoded control

queue for the merge box can be examined using peek before the queue is

actually used and consumed by decode.

See Also

decode, encode

 2

8

post

Synopsis

post(Identifier id);

Box Types

static

Methods

Apply

Description

The post function causes any change in the value of output parameter identifier

id to be propagated to the destination parameters. The post function returns

immediately before the parameter propagation is completed. Unlike the push

function, the post function cannot be called from trigger primitives.

Examples

Output: {

 int Out;

}

Apply: {

 Out = 5;

 push(Out);

}

See Also

push

 2

9

produce

Synopsis

void produce(Identifier id, int tokens);

Box Types

static

Methods

Apply

Description

The function produce notes how many tokens have been produced on a

dynamic output stream identifier, id. For any identifier, produce should be

called just once at the end of the function. The algorithm must keep a running

total of the number of tokens to be produced and pass this number to the

produce function in the tokens variable. The identifier passed to the

produce function must be from a dynamic or nondet output stream. The

produce function should not produce more tokens than there is space for on the

output stream.

Examples

For a dynamic output stream with an interpolate rate of I declared as:

dynamic stream out(I);

or

dynamic stream out; /* I is 1 by default */

The call to produce should not produce more than granularity*I tokens.

For a nondet output stream that has successfully met the requirement of an

amount function as:

amount(out,N);

 3

0

the produce function should produce no more than N tokens.

Example Primitives

embeddable/stream/comm/oqpsk_mod shows how the amount of data to

be produced can be calculated in a data dependent fashion.

embeddable/stream/logic/branchf_c shows how the number of

tokens produced can be determined from a control input stream.

See Also

avail, amount, produce

 3

1

produce_ptr

Synopsis

produce_ptr(Identifier id, void *ptr, int N,

 void (*release)(void *, void *),

 void *handle

Box Types

static

Methods

Apply

Description

The produce_ptr function sets the buffer of a dynamic or nondet output

pointer stream id to be equal to ptr and notes that there are N tokens available

in the buffer. When all of the downstream primitives are done using the pointer

(as denoted by all the destinations having consumed all N tokens from the pointer

stream), then the release function is called. The release function is passed

two parameters: the pointer, ptr that was passed to produce_ptr as its second

parameter, and the handle passed as the fifth parameter.

Calling produce_ptr(out,ptr,N,release,handle) on a pointer

stream is logically equivalent to calling the following on a non-pointer stream:

memcpy(out,ptr,N*sizeof(*out)); /* copy data from

pointer to output */

produce(out,N);

release(out,handle);

The advantage of using produce_ptr is that it does not require copying data to

the output stream. The call to release is postponed until the output stream is no

longer needed by the downstream primitives.

Examples

Below is a code fragment that shows how produce_ptr can be used with an

input device that can – when queried – return a pointer of varying length. A

handle to the input device is opened in the Start method. The Apply method

gets pointers from the input device and calls produce_ptr to pass that pointer

to the output. The produce_ptr parameter release is a function that notes

 3

2

how the pointer is to be returned to the input device when it is no longer needed.

The release function will be passed both the ptr (the second parameter

passed to produce_ptr) and the device handle (the fifth parameter passed to

produce_ptr). The code fragment is based on a hypothetical input device that

provides the function getPtrFromHandle that returns a pointer to values that

are filled in by the device driver and also returns the number of values in the

pointer that have been set.

Local: {

 void *handle; /* handle to an input device */

}

Output: {

 pointer stream float out(Nout);;

}

Include: {

 release(void *ptr, void *handle) {

 .. inform the device described by handle that

 the ptr is now free to write new data to ..

 }

}

Start: {

 handle = .. create handle to input device ..

}

Apply: {

 int Nvalues;

 float *ptr = getPtrFromHandle(handle,&Nvalues);

 if (Nvalues > 0) {

 .. a ptr to a vector of floats Nvalues in length

 was read from the input device...

 produce_ptr(out,ptr,Nvalues,release,handle);

 } else {

 embSuspendRetry("input device not ready");

 }

}

See Also

set_ptr, produce

 3

3

push

Synopsis

push(Identifier id1, Identifier id2,…,Identifier idN);

Box Types

trigger

static

Methods

Trigger

Apply

Description

The push function simultaneously notes that the values of output parameter

identifiers id1, id2, … idN have been changed and causes the effects of

those changes to be propagated to the downstream primitives and derived

parameter values. The push function does not return until its effects have

completely propagated throughout the graph. All of the downstream primitives

and derived parameter values affected by the push must be updated before the

push returns. Since the push function doesn't return until the downstream

graph has completely executed, the push function calls the downstream graph as

though it were a function.

The push function can be called by trigger primitive Trigger methods or static

primitive Apply methods. When called from an Apply method, the push

function can currently take only one parameter value.

Examples

The following trigger primitive copies the input to the two outputs and pushes the

outputs sequentially. All of the effects of push(out0) will occur before any of

the effects of push(out1).

Name: I_Seq2

Type: trigger

Input: {

 trigger int in ;

}

Output: {

 int out0 ;

 3

4

 int out1 ;

}

Trigger: {

 out0 = in ;

 push(out0) ;

 out1 = in ;

 push(out1) ;

}

A static primitive example is given below. The push function called from a static

primitive Apply method gives the Apply method the opportunity to convert

streams to parameters. In this primitive, every floating-point input is pushed to

the output parameter Out. All the effects of push must complete before push

returns.

Name: push

Type: static

Input: {

 stream float in;

}

Output: {

 float Out;

}

Apply: {

 int i;

 for (i=0; i<granularity; i++) {

 Out = in[i];

 push(Out);

 }

}

Example Primitives

discrete/integer/I_Seq2 – a primitive that uses the push function to

update its outputs in sequence.

discrete/stream/v_VA – a primitive that converts a stream of vectors into

a pointer to G vectors. This primitive is used to allow vector streams to be sent to

GUIs built out of trigger boxes.

See Also

post

 3

5

 3

6

segment

Synopsis

segment(Identifier id, SegmentType type);

Box Types

static

Methods

Apply

Description

The need often arises to process finite length data streams to completion. At the

beginning of the stream, the processing must be reset and summary information

often needs to be produced at the end of the stream. The segmented data flow

capability in Gedae addresses the problem of directly processing finite streams

and also offers opportunities to achieve efficient parallel execution of algorithms.

The segment function call puts a segment marker on the segmented

dynamic or segmented nondet output stream specified by the identifier

id. The segment marker can be either SEGMENT_BEGIN (begin a new

segment) or SEGMENT_END (end the current segment).

Examples

Segmentation control begins with a box that produces segments on its output.

Outputs of static box primitives can be marked as segment outputs using the

keyword segmented. See the example below.

Output: {

 segmented dynamic stream float out;

}

All segmented outputs must be either dynamic or nondet. The beginning and

end-of-segment are marked on the stream using the built-in segment function:

segment(out,SEGMENT_BEGIN); /* begin a new segment */

and

segment(out,SEGMENT_END); /* end current segment */

 3

7

Any produce statements between the beginning and the end-of-segment put

data into the current segment. If a produce statement occurs after a

SEGMENT_END and before a SEGMENT_BEGIN is issued, then an implicit

segment-begin is issued. As a result, issuing a segment-begin is not necessary.

An example box that produces segments is given below. The box drops the first

Where tokens from its input data stream. After this, it cyclically begins a new

segment, copies Ton tokens from the input to the output, ends the segment and

drops the next Toff tokens from the input.

Name: segmenter

Type: static

Input: {

 stream float in;

 int Ton;

 int Toff;

 int Where;

}

Local: {

 int where;

}

Output: {

 stream segmented dynamic float out;

}

Reset: {

 where = -Where;

}

Apply: {

 int g;

 int N = 0;

 int k = 0;

 for (g=0; g<granularity; g++) {

 if (0 <= where && where < Ton) {

 out[k++] = in[g];

 N++;

 }

 where++;

 if (where == Ton) {

 produce(out,N);

 N = 0;

 segment(out,SEGMENT_END);

 }

 if (where == Ton+Toff) {

 where = 0;

 }

 }

 produce(out,N);

 3

8

}

A segment is processed by the primitive or subgraph immediately following a

segmented output. Therefore, the scope of the segmentation is the single flow

graph or primitive immediately attached to the segmenter output. The subgraph

calls its Reset methods at the beginning of segment execution and its Destroy

and EndOfSegment methods at the end-of-segment execution. The

granularity of the subgraph will be set to consume as much data as possible

up to the end of the segment. In the example, graph and subgraph shown in the

two figures below, the segproc3 box is within the scope of the segmenter

box output.

Figure 1Top-level segmentation control graph

 3

9

Figure 2 - Graph controlled by segmenter output

See Also

produce

y

 4

0

set

Synopsis

set(Identifier id, void *value, int *nelems);

Box Types

trigger

eval

Methods

Init

Description

The set function allows the default value of a vector, matrix or higher level

dimensional parameter input to be initialized in the primitives Init method. The

id argument is the identifier to be set. The value argument is the values of the

array and should be a flat array of size in bytes of:

nelems[0]*nelems[1]*…*nelems[ndims-1]*sizeof(Type)

In the above expression, ndims is the number of dimensions of the parameter

and must be greater than or equal to 1. Type is the type of the parameter value to

be set.

Examples

The following code initializes Name to a default value of "hello world" and

V to a two-dimensional array of size 2x4 with values {1,2,3,4} in the first row

and values {11,12,13,14} in the second row.

Input: {

 char Name[N];

 float V[P][Q];

}

Init: {

 char *str = "hello world";

 float x[] = {1,2,3,4,11,12,13,14};

 int len = strlen(str);

 int nelems[2] = {2,4}

 set(Name,str,&len);

 4

1

 set(V,x,nelems);

}

Example Primitives

discrete/string/A_ResetK sets input strings to a default value of "" – the

null string.

See Also

 4

2

set_ptr

Synopsis

set_ptr(Identifier id, void *ptr,

 void (*release)(void *, void *),

 void *handle);

Box Types

static

Methods

Apply

Description

The set_ptr function sets the buffer of an output pointer stream id to be equal

to ptr. When all of the downstream primitives are finished using the pointer,

which means that all the destination primitives have executed to completion, then

the release function is called. The release function is passed two

parameters: the pointer, ptr that was passed to produce_ptr as its second

parameter, and the handle passed as the fifth parameter.

Calling set_ptr(out,ptr, release,handle) on a pointer stream is

logically equivalent to calling the following on a non-pointer stream.

memcpy(out,ptr,N*sizeof(*out));

release(out,handle);

The advantage of using set_ptr is that it does not require copying data to the

output stream. The call to release is postponed until the downstream primitives

no longer need the output stream.

Example Primitives

embeddable/stream/audio/audioIn_nt – this primitive shows how a

pointer stream can be used to allow destination primitives to directly process data

out of an audio device output buffer without requiring the data to be copied out of

the buffer.

See Also

produce_ptr

 4

3

 4

4

size

Synopsis

int size(Identifier id);

Box Types

static

Methods

Apply

Description

The size function returns the number of data elements of the base type available

in a static input or output stream identifier. The number of data elements is the

granularity of the box times the product of the stream’s dimension values times

the decimate or interpolate rate of the identifier.

Examples

Given streams defined as:

Input: {

 stream int in[R][C](D);

 int D;

 int I;

}

Output: {

 stream int out[R][C](I);

}

then in an Apply method where the built-in variable granularity is already

defined, the statements:

int n_in = size(in);

int n_out = size(out);

are equivalent to:

int n_in = granularity*R*C*D;

int n_out = granularity*R*C*I;

 4

5

Example Primitives

Using the size function – the following three primitives have identical Apply

methods:

embeddable/vector/add - size(in)==granularity

embeddable/vector/v_add – size(in)==granularity*n;

embeddable/matrix/m_add – size(in)==granularity*n*m;

See Also

granularity

 4

6

src_name

Synopsis

char *src_name(Identifier id);

Box Types

trigger

eval

Methods

Trigger

Eval

Description

The function src_name returns the hierarchical graph name of the source of the

input identifier. If the identifier is unconnected, then src_name returns the

string "<no-source>".

Examples

Name: SrcName

Type: eval

Input: {

 int in;

}

Output: {

 char Out[200];

}

Include: {

#include <strings.h>

}

Eval: {

 strcpy(Out,src_name(in));

}

 4

7

time

Synopsis

double time(Identifier id);

Box Types

trigger

Methods

Trigger

Description

The time function returns the time in milliseconds when the trigger input

identifier id was set. The time value returned is useful for measuring elapse

times since the last call but has no absolute interpretation.

Examples

The primitive discrete/float/Time shown below outputs the time in seconds that

the input in was last updated.

Name: Time

Type: trigger

Input: {

 trigger int in;

}

Output: {

 float out;

}

Trigger: {

 out = time(in)*0.001;

 push(out);

}

See Also

dirty

 4

8

tokensize

Synopsis

int tokensize(Identifier id);

Box Types

static

Methods

Start

Reset

Apply

Destroy

Terminate

EndOfSegment

Cycle

Description

The tokensize function returns the product of a stream’s dimension values.

Examples

Given streams defined as:

Input: {

 stream int in[R][C](D);

 int D;

 int I;

}

Output: {

 stream int out[R][C](I);

}

Then:

int n_in = tokensize(in);

int n_out = tokensize(out);

are equivalent to:

int n_in = R*C;

 4

9

int n_out = R*C;

To get the number of bytes in a token, multiply tokensize(in) by

sizeof(<type>) where <type> is the data type of the input.

See Also

size, granularity

 5

0

Built-in Variables

The built-in variables provide basic values that may be used in primitives. While

they appear as variables in the Gedae Primitive Language, they get code-

generated into more complicated expressions in the C code that implements the

primitive.

 5

1

firing

Synopsis

int firing;

Box Types

cyclic

Methods

Cycle

Description

The firing variable is used by the Cycle method of a cyclic box. Cyclic

boxes exhibit predetermined data flow that changes in a cyclic fashion. The

length of the cycle is specified in the Length section of the box. The Cycle

method should calculate the total number of tokens consumed and produced on

each static input and output after firing firings of the primitive have occurred.

On the zeroth firing (firing == 0), the Cycle method should always set the

consume and produce amounts to 0. On the last firing of a cycle (firing ==

Length), the Cycle method should set the consume and produce amounts to

the full amount of data consumed and produced by the primitive in one complete

cycle.

Examples

An example of a primitive that can be implemented as a cyclic box is a

multiplexer. The function of a multiplexer is to interleave its input streams onto

its output stream. A firing of a non-cyclic N input multiplexer requires one token

on each of the N inputs. These N tokens from the separate input streams are then

combined (multiplexed) into a stream of N tokens on the output. A non-cyclic

implementation of a mux2 box (2 input multiplexer) is:

Name: mux2

Type: static

Input: {

 stream float a;

 stream float b;

}

Output: {

 stream float out(2);

 5

2

}

Apply: {

 for (g = 0; g<granularity; g++) {

 out[2*g] = a[g];

 out[2*g+1] = b[g];

 }

}

This implementation has the disadvantage that the output cannot be produced

until both the a and b inputs have arrived. The latency of the primitive may be

greater than necessary because the primitive must wait for both inputs to arrive.

This problem is solved by implementing the multiplexer as a cyclic box as given

below:

Name: mux2

Type: cyclic

Input: {

 stream float a(NA);

 stream float b(NB);

}

Local: {

 int even;

 int NA;

 int NB;

}

Output: {

 stream float out(NA+NB);

}

Include: {

#include <e_vmov.h>

}

Length: {

 return 2;

}

Cycle: {

 NA = (firing+1)/2;

 NB = firing/2;

}

Reset: {

 even = 1;

}

Apply:

 for (g = 0; g<granularity; g++) {

 if (even) {

 out[g] = *a++;

 } else {

 5

3

 out[g] = *b++;

 }

 even = !even;

 }

}

In the above example, the cyclic box Cycle method states how many tokens are

consumed on the a and b inputs by a particular firing. The values of NA (the

tokens consumed on a, NB (the tokens consumed on b) and NA+NB (the tokens

produced on the output) are shown in the table below.

firing 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NA 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
NB 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
NA+NB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In the above table, every firing of the mux2 box copies a new value to the output

(the number of tokens produced on the output increases by 1 on each firing of the

box) but consumes data from only one of the inputs. The cyclic version of the

mux2 needs to fire two times for every one firing of the non-cyclic version. On

every even cycle, the cyclic version has moved firing/2 tokens from each

input to produce firing tokens on the output.

The following example shows how a cyclic multiplexer with a family of inputs

can be implemented. In the multiplexer below, a family of F inputs is combined

elementwise and sequentially placed on the output. For a noncyclic version of the

box, one firing sets out(i) = [i]in. for i=0…F. For a cyclic version of the

box, after firing firing times (firing+M-i-1)/M elements are copied from

input i to the output. For example, if M is 3, then the following table shows how

many elements are copied to each output after a total of firing firings of the

box have occurred.

firing 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D[0] 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
D[1] 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
D[2] 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5
Sum(D[i]) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

So for any particular input, a token is consumed off an input every 3 firings of the

primitives. The consumes from the inputs are offset from each other – that is, on

the zeroth input tokens are consumed on firing 1, 4, 7,10 and 13 while the

consumes on the first input are offset from the zeroth by 1 (consumes on firings 2,

5, 8, 11, and 14) and the consumes on the second input are offset from the zeroth

input by 2.

 5

4

Name: mux

Type: cyclic

Input: {

 stream float [i:F]in(D[i]);

}

Local: {

 int D[F];

 int where; /* the input from which the next */

 /* execution of the box begins to */

 /* copy data */

}

Output: {

 stream float out(sum(D,F));

}

Include: {

#include <e_vmov.h>

}

Length: {

 return F;

}

Cycle: {

 int i;

 for (i=0; i<F; i++) {

 D[i] = (firing+F-i-1)/F;

 }

}

Reset: {

 where = 0;

}

Apply: {

 int j;

 for (j=0; j<F; j++) {/* output offset by j */

 int f = where + j; /*family member to copy out */

 int len =(granularity+F-j-1)/F;

 if (f >=F) f-=F;

 e_vmov(in[f],1,out+j,F,len);

 }

 /* advance input by the number of firings */

 /* (granularity) mod F */

 where = (where+granularity)%F;

}

Example Primitives

embeddable/stream/mux – cyclic multiplexer

embeddable/stream/demux – cyclic demultiplexer

 5

5

See Also

granularity

 5

6

granularity

Synopsis

int granularity;

Box Types

static

Methods

Apply

Description

A firing of a primitive is the basic atomic data flow operation of a primitive. For

fully static data flow primitives, each firing requires a fixed number of tokens on

each input and produces a fixed number of tokens on each output. To fire, most

primitives require one token on each input and produce one token on each output.

An example of such a primitive is the embeddable/stream/add. Other primitives

may require multiple tokens on some inputs and/or multiple tokens on some

outputs. An example of such a primitive is the embeddable/stream/decimate that

requires D tokens on its input (where D is a parameter of the decimate primitive)

and produces 1 token on its output.

The built-in variable granularity indicates how many firings of a primitive

one execution of the Apply method should implement. Any static or dynamic

input streams will be scaled in size to provide enough data to allow the box to fire

granularity times in one execution. Any static or dynamic output streams

will provide enough output buffer space to allow the box to fire granularity times

in one execution. The granularity keyword is available only in the Apply

method and can vary from one execution of the Apply method to the next.

Examples

The following example uses two scalar stream inputs to select one element out of

a matrix. The for-loop running from g = 0..granularity-1 is typical of

many primitives using the granularity keyword.

Name: m_sel_s

Type: static

Input: {

 stream float in[R][C];

 stream int r;

 stream int c;

 5

7

}

Output: {

 stream float out;

}

Apply: {

 int g;

 for (g=0; g<granularity; g++) {

 *out++ = in[(*r++)*C+(*c++)];

 in += R*C; /* advance to next input token */

 }

}

Most primitives should either use granularity or size (which is

proportional to granularity) so that the primitive fires enough times to insure

that all the input tokens are processed; however, there are some cases when a

custom primitive must execute at a granularity of 1. If that is the case, then the

primitive Apply method should verify that the granularity is 1 and should call

embTerminateError if it is not. For example:

Apply: {

 if (granularity != 1) {

 embTerminateError(“expected granularity of 1”);

 } else {

 .. do normal operation of primitive ..

 }

}

Example Primitives

embeddable/stream/repeat – repeats the first R tokens, which are

recorded in a local variable. The granularity is unrelated to the value of R.

For example R could be 501 and granularity 237. In this case, the box will

record 237 tokens during the first firing, 237 during the second and 27 tokens

during the third. It will start playing back the repeat buffer during the third firing

after the last 27 tokens are recorded. The primitive is coded to perform the

algorithm of repeating the first 501 input tokens independent of the primitive’s

execution granularity.

See Also

size

 5

8

queues_ready

Synopsis

int queues_ready;

Box Types

static

Methods

Apply

Description

At the beginning of an Apply method’s execution, the queues_ready flag is

set to 1; however, if any calls to the amount function fail, then the

queues_ready is set to 0. If the queues_ready flag was set to 0, then this

is an indication that the primitive did not fire and will be put in the queue-wait

state to wait for the amount of data requested by the calls to the amount

function.

Examples

See the example in the section describing the amount function.

Example Primitives

embeddable/stream/logic/merge_c shows an example of how a

control stream can determine the amount that must be available on two

nondet input streams.

See Also

amount, avail

 5

9

self_name

Synopsis

char *self_name;

Box Types

trigger

eval

Methods

Init

Reset

Destroy

Trigger

Eval

Description

The function self_name returns a string that is the hierarchical graph name of

this instance of the primitive. The self_name does not include the top-level

graph name.

Examples

The following code shows how the Title string of the Shell primitive is

initialized to have a default value of the hierarchical graph name of this instance

of the Shell primitive.

Name: Shell

Type: trigger

Input: {

 char Title[N];

}

Init: {

 int len = strlen(self_name)+1;

 set(Title,self_name,&len);

 shell = 0;

}

 6

0

Example Primitives

widget/Xm/Shell – shows how the Shell primitive uses self_name to

set the default Title to be displayed in the Shell banner.

See Also

embBoxName

 6

1

Trigger Primitive Save/Restore Functions

Trigger primitives can have Save and Restore methods that are called when a

Gedae user saves and restores parameter values from Gedae graph parameter files.

The Save method saves the state of the primitive to the parameter file, and the

Restore method restores the primitives state from the parameter file. For

example, a Trigger primitive that implements a text entry window might have a

Save method that saves the value of the text entered by a user and a Restore

method that restores the value of the text. A total of eight functions have been

provided to allow Trigger primitives to save and restore any information required.

These functions are:

save_int(int);

save_float(float);

save_double(double);

save_string(char *);

restore_int(int *);

restore_float(float *);

restore_double(double *);

restore_string(char **);

Each function is described in the subsequent sections, although only

restore_int is illustrated with a complete example.

 6

2

restore_int

Synopsis

 restore_int(int *value);

Description

When a parameter file is loaded and a trigger primitive’s Restore method is

called, the restore_int function restores the integer parameter value saved

to the parameter file by the save_int function.

Example

This example shows how the save/restore functions are used. No other examples

will be given by the other save/restore function descriptions.

The save functions may be called from a trigger box Save method, while the

restore functions may be called from a trigger box Restore method. The save

and restore functions should be called in the same order so that everything saved

to the parameter file by the Save method is restored by the Restore method.

The following code saves the size and location of a text display in the Save

method and creates, sizes and positions the text display in the Restore method.

Name: text_display

Type: trigger

Input: {

 trigger char in[N];

}

Local: {

 TextDisplay td;

}

Include: {

...

#include <td.h>

}

Reset:{

 td = ...create the text display here...

}

Trigger: {

 ... send data to the text display td here ...

 6

3

}

Save: {

 /* save the location and size of the display */

 save_int(td->x);

 save_int(td->y);

 save_int(td->width);

 save_int(td->height);

}

Restore: {

 int x,y,width,height;

 /* create a text display if not already created */

 if (!td) {

 td = CreateTextDisplay(self_name);

 }

 /* read its size and location from the param file*/

 restore_int(&td->x);

 restore_int(&td->y);

 restore_int(&td->width);

 restore_int(&td->height);

 /* set the display to the new size and location */

 RestoreTextDisplay(td);

}

Destroy: {

 ... destroy the handle to the text display here ...

}

Example Primitives

The following are examples of trigger primitives that have Save and Restore

methods and use save/restore functions.

widget/displays/text_display – the full implementation of the

example above.

widget/displays/v_disp – shows how arrays of data can be saved.

discrete/string/A_Hold – a primitive that records the last string input to

the trigger box as the default value out of the box.

 6

4

restore_double

Synopsis

 restore_double(double *value);

Description

When a parameter file is loaded and a trigger primitive’s Restore method is

called, then the restore_double function restores the double parameter

value saved to the parameter file by the save_double function.

 6

5

restore_float

Synopsis

 restore_float(float *value);

Description

When a parameter file is loaded and a trigger primitive’s Restore method is

called, then the restore_float function restores the float parameter value

that was previously saved to the parameter file by the save_float function.

 6

6

restore_string

Synopsis

 restore_string(char **value);

Description

When a parameter file is loaded and a trigger primitive’s Restore method is

called, then the restore_string function restores the zero terminated

character string parameter value that was previously saved to the parameter file

by the save_string function.

 6

7

save_int

Synopsis

 save_int(int value);

Description

When a parameter file is saved and a trigger primitive’s Save method is called,

then the save_int function saves an integer parameter value to the parameter

file.

 6

8

save_double

Synopsis

 save_double(double value);

Description

When a parameter file is saved and a trigger primitive’s Save method is called,

then the save_double function saves a double parameter value to the

parameter file.

 6

9

save_float

Synopsis

 save_float(float value);

Description

When a parameter file is saved and a trigger primitive’s Save method is called,

then the save_float function saves a float parameter value to the parameter

file.

 7

0

save_string

Synopsis

 save_string(char *value);

Description

When a parameter file is saved and a trigger primitive’s Save method is called,

then the save_string function saves a zero terminated character string

parameter value to the parameter file.

 7

1

Functions

The functions listed in this section are directly available in the libraries against

which Gedae primitives and other libraries are linked. A user may use these

functions within primitives, but unlike the built-in functions, they also may be

used within external libraries to be called by the primitives.

There are some restrictions on the calling context of the functions. Some of the

functions can only be called from the calling tree of certain methods of certain

primitive types. For example, the embTerminateError can only be called from

stream primitive Start, Reset or Apply methods. Other functions can be called in

any context. For example, the function embWallclock can be called from any

function to get the current wallclock time.

 7

2

embBoxName

Synopsis

char *embBoxName(void);

Box Types

static

cyclic

Methods

All methods

Description

The function embBoxName returns the hierarchical name of the primitive from

which it is called. The name does not include the top-level graph name. The

name provides a unique identifier for any primitive instance in the graph.

Examples

In the following example graph:

Top-level segmentation control graph

 7

3

A call to the embBoxName function from the lpf primitive would return the

value "segproc3.lpf".

Example Primitives

This function is primarily used for debugging, so there are no examples in the

standard library.

y

 7

4

embBreak

Synopsis

void embBreak(char *reason);

Box Types

static

cyclic

Methods

Apply

Description

The function embBreak causes a breakpoint to be invoked under program

control. When the function executes it forces the partition executing the primitive

to stop and brings up the Gedae development environment debug dialog. The

debug dialog indicates which partition is stopped and which box invoked the

break point.

Examples

Running the graph

gedae –file demo/comm/e_comm –gr embedded

We then add a call to embBreak to the demod.demod1 primitive as:

Name: demod1

Type: static

Input: {

 stream float in(2);

 …

}

…

Output: {

 stream complex out;

}

…

Apply: {

 embBreak("test break points");

 oqpsk_demod1(in,out,size(in),Adc,Ga,Aref,&D_dc,(float

*)Dh,&D_AGC);

}

 7

5

Running the application causes the debug dialog to pop up as below.

At this point the user can examine the sink partitions memory using the Map

toggle and single step through the execution of primitives using the Step button.

The graph can be restarted by toggling the Stop button.

 7

6

embCalloc

Synopsis

void *embCalloc(char *memtype,

 int nelems, int token_size);

Box Types

All

Methods

All

Description

The embCalloc function returns a pointer to memory from the memory block

named memtype of size nelems*token_size. The memory area is cleared

to zero value by the function. The embCalloc function is identical to calloc

with the exception of the memtype field. The memtype field’s meaning is BSP

specific. Many Gedae BSPs ignore this field and simply call calloc. Other

Gedae BSPs provide different heaps that can be managed, and the heap from

which the memory is allocated can be selected using memtype. The memtype

"default" is always implemented and indicates allocation should be done off

the standard heap. Memory allocated with embCalloc should be freed calling

embFree.

Examples

float *x = embCalloc("default",10,sizeof(float));

creates a zero filled array of 10 floating point elements from the "default" memory

bank.

 Example Primitives

Generally, allocating and freeing of memory is less desirable than having the

memory use preplanned. Gedae’s standard library has no primitives that allocate

memory.

See Also

mem_type, embFree

 7

7

embFClose

Synopsis

void embFClose(int fd);

Box Types

All

Methods

All

Description

The function embFClose closes the file descriptor fd opened by embFOpen.

Examples

If a primitive’s Start method opens a file descriptor using embFOpen as:

Local: {

 int fd;

}

Start: {

 fd = embFOpen(Filename,"r");

}

then the Terminate method of the primitive should close the file descriptor

using embFClose as:

Terminate: {

 embFClose(fd);

}

Similarly, if the Reset method of a primitive opens a file descriptor using

embFOpen, then the Destroy method of the primitive should close it using

embFClose.

Example Primitives

embeddable/stream/source/read – reads a binary file, and when the

file has been completely read it closes and reopens the file. The file is opened

from the Reset method. As a result, this primitive would open the file once at

 7

8

the beginning of execution if the primitive is not part of a segmented subgraph or

at the beginning of each segment if the primitive is part of a segmented subgraph.

The file descriptor is closed by the Destroy method at both the end-of-graph

execution and at the end of every segment.

embeddable/stream/sink/write – writes a stream to a binary file.

See Also

embFopen

 7

9

embFFlush

Synopsis

void embFFlush(int fd);

Box Types

All

Methods

All

Description

The embFFlush function flushes any data written to file descriptor fd opened

by embFOpen.

See Also

embFOpen

 8

0

embFOpen

Synopsis

int embFOpen(char *name,char *access);

Box Types

All

Methods

All

Description

The embFOpen opens up a file descriptor for the path given by name with access

writes specified by access. This function causes a call to the C standard library

function fopen(name,access) from the command program. As a result, the

file will successfully open only if the name of the file is relative to where the

command program was executed, and the command program has rights to open

the file with the access requested. The access parameter is defined in the same

way that it is defined for fopen on the host processor.

Examples

See embFClose

Example Primitives

embeddable/stream/source/read – reads a binary file

embeddable/stream/sink/write – writes a binary file

embeddable/stream/source/scanf – reads an ascii file of floats

embeddable/stream/sink/printf – write an ascii file of floats

See Also

embFClose, embFPrintChar, embFScanChar, embFWrite,

embFRead

 8

1

embFPrintChar

Synopsis

embFPrintChar(int fd, int nelems, char *buf);

Box Types

All

Methods

All

Description

The function embFPrintChar prints nelem ASCII characters from the buffer

buf to the file descriptor fd, which was created with write access by

embFOpen.

See Also

embFOpen

 8

2

embFRead

Synopsis

int embFRead(int fd,int num,int size,void *buf);

Box Types

All

Methods

All

Description

The function embFRead reads binary data from the file descriptor fd. The

number of binary elements read from the file is given by parameter num and each

element is size bytes in length. The data is read into buffer buf, which must

be large enough to contain num*size bytes. Function embFRead returns the

number of elements actually read. The file descriptor that is passed to

embFRead should have been opened with embFOpen with access writes of

"rb".

Examples

Given a file "xyzzy" containing 100 bytes, consider the following code:

int fd = embFOpen("xyzzy","rb");

int nelems = 200;

int bytes_per_elem = 4;

char *buffer = embCalloc("default",200,4);

int nread = embFRead(fd,nelems,bytes_per_elem,buffer);

embFClose(fd);

Since each element contains 4 bytes, the 100 byte file only contains 25 elements.

While it was requested that 200 elements be read, the call to embFRead will

return 25- the actual number of elements read.

Example Primitives

embeddable/stream/source/read

 8

3

See Also

embFOpen, embFWrite

 8

4

embFScanChar

Synopsis

int embFScanChar(int fptr,int size,char *buf);

Box Types

All

Methods

All

Description

The function embFScanChar attempts to read size characters from the file

descriptor fptr into buffer buf. It returns the number of characters actually

read. The file descriptor passed to embFScanChar should have been created with

a call to embFOpen with access writes of "r".

 8

5

embFWrite

Synopsis

EXPORT void embFWrite(int fd,int num,

 int size,void *buf);

Box Types

All

Methods

All

Description

The function embFWrite writes binary data from the file descriptor fd. The

number of binary elements written to the file is given by parameter num and each

element is size bytes in length. The data is written from the buffer buf, which

must be num*size bytes in size. The file descriptor should have been opened

with embFOpen with access writes of "wb".

See Also

embFRead, embFOpen

 8

6

embFree

Synopsis

void embFree(char *memtype, void *ptr);

Box Types

All

Methods

All

Description

Function embFree frees a block of memory pointed to by ptr that was

previously allocated using embCalloc. The memtype field should be identical

to the memtype field used by embCalloc when ptr was created.

Examples

float *x = embCalloc("default",10,sizeof(float));

creates a zero filled array of 10 floating point elements from the "default" memory

bank.

To free this memory call

embFree("default",x);

See Also

embCalloc

 8

7

embGlobalStop

Synopsis

void embGlobalStop(char *reason);

Box Types

static

cyclic

Methods

Apply

Description

The function embGlobalStop causes a breakpoint to be invoked under

program control. When the function executes it forces the partition executing the

primitive and all other partitions to stop and brings up the Gedae development

environment debug dialog. The debug dialog indicates which primitive invoked

the break point.

Examples

Running the graph

gedae –file demo/comm/e_comm –gr embedded

We then add a call to embGlobalStop to the demod.demod1 primitive as:

Name: demod1

Type: static

Input: {

 stream float in(2);

 …

}

…

Output: {

 stream complex out;

}

…

Apply: {

 embGlobalStop("test break points");

 oqpsk_demod1(in,out,size(in),Adc,Ga,Aref,&D_dc,(float

*)Dh,&D_AGC);

}

 8

8

Running the application causes the debug dialog to pop up as below. In this case

all the partitions are put into the Stopped state.

At this point the user can examine the partitions memory using the Map toggle

and single step through the execution of primitives in any partition using the Step

button. The partitions can be restarted by toggling the Stop button.

 8

9

embNoteProgress

Synopsis

void embNoteProgress(void);

Box Types

static

cyclic

Methods

Apply

Description

The function embNoteProgress indicates that a primitive’s Apply method

was partially executed but did not complete. As a result of making this call, a

primitive will release control to other static schedules containing primitives that

are ready to fire. The primitive will be tried again at a later point and should

record enough information in its Local variables so that it can resume execution

where it left off. The embNoteProgress function causes identical behavior to

the embSuspendRetry function but the Trace Table will show that the

primitive has partially executed rather than blocked. Often at the same time the

embNoteProgress function is called, the embSetGranularity function is

also called to indicate how many firings an execution of the primitive successfully

completed. This information is only used on the Trace Table and does not affect

the behavior of the graph.

Examples

Input device primitives are typical examples of primitives that use

embNoteProgress. Such a primitive might be able to read only N samples

from the input device during an execution of the Apply method. If N is less than

the granularity, then the primitive will not be able to complete. The primitive

must keep track of how much data was actually read so it can begin where it left

off on the next firing of the primitive.

In the following code we hypothesize the following two functions:

1. openInputDevice that creates a handle to an input device.

2. readDataFromInputDevice that has three parameters: a handle of an input

device, a pointer to be filled with data from the device and the number of

 9

0

samples to be read from the device. Any samples not read remain in the input

device and are ready to be read on the next call to readDataFromInputDevice.

Local: {

 int where;

 void *handle;

}

Start: {

 handle = openInputDevice();

 where = 0;

}

Apply: {

 int N = readDataFromInputDevice(handle,

 out+where,

 granularity-where);

 if (N) {

 where += N;

 if (where < granularity) {

 embNoteProgress();

 } /* otherwise we successfully completed! */

 embSetGranularity(N);

 } else {

 embSuspendRetry("no data available");

 }

}

See Also

embSuspendRetry, embSetGranularity

 9

1

embGetPeriod

Synopsis

void embGetPeriod(int *policy, int *units,

 int *msw, int *lsw);

Box Types

static, cyclic

Methods

Reset, Apply

Description

The function embGetPeriod returns four values - policy, units, msw and

lsw - that describe the scheduling policy and periodicity of the calling primitive's

static schedule. The policy returned is either DATAFLOW or PERIODIC. If

DATAFLOW, then the schedule will run when ready and the other fields are of no

consequence. If PERIODIC, then the schedule is set to run with a periodicity

described by the other three parameters. If units is CLOCK_TIC (the most

typical case), then if ready, the schedule will run no more frequently than an

elapse time in seconds given by the msw + 1e-9*lsw. Otherwise, the units

are SCHEDULE_TIC and the schedule will run after 1000000000*msw+lsw

other schedules have executed.

The period can be set either from the Schedule Info Dialog or from a call from

any primitive in the static schedule to embSetPeriod.

See Also

embSetPeriod

 9

2

embGetPriority

Synopsis

int embGetPriority(void);

Box Types

static

cyclic

Methods

Start

Reset

Apply

Description

The function embGetPriority returns the priority of the calling primitive's static

schedule as set by either a previous call to embSetPriority or as set by the

application developer in the Schedule Info Dialog. The schedule that is ready to

run and has the highest priority runs first.

See Also

embSetPriority

 9

3

embGetSchedule

Synopsis

Schedule embGetSchedule(void);

Box Types

static

cyclic

Methods

Start

Reset

Apply

Description

The embGetSchedule function is usually called from the start method and

returns a handle to the Schedule data structure for this primitive. The

embGetSchedule function is usually used in conjunction with embPause and

embResume. Schedules that are paused using embPause must be resumed by

an interrupt handler, thread or callback routine that calls

embResume(thread,schedule) when the primitive becomes ready to

execute again. The schedule parameter should be set to the value returned by

embGetSchedule, and the thread parameter should be set to the value returned

by embSelf. Usually these values are registered as call-data to the interrupt

handler, thread or callback started from the primitives Start method.

Examples

See embResume

Example Primitives

See embResume

See Also

embPause, embResume, embSelf

 9

4

embMemcpy

Synopsis

void *embMemcpy(void *dest, void *src, int n);

Box Types

All

Methods

All

Description

The function embMemcpy copies n bytes from src to dest. This function is

semantically identical to the standard C library function memcpy. The

implementation is BSP specific. Each BSP should strive to make embMemcpy as

efficient as possible given the alignment of dest, src and the value of n. For

example, for 32 bit word aligned operands and n a multiple of 4, embMemcpy

should call the vector library function e_vmov.

 9

5

embName

Synopsis

char *embName(void);

Box Types

All

Methods

All

Description

The function embName returns the name of the partition in which the primitive is

running.

 9

6

embPause

Synopsis

void embPause(void);

Box Types

static

cyclic

Methods

Apply

Description

The function embPause puts a primitive in the paused state. The function is

similar to embSuspendRetry except that the calling primitive will only be

woken up by a subsequent call to embResume. The functions embPause and

embResume provides an interrupt driven model of execution rather than the

polling model provided by embSuspendRetry. When embPause is called, it

signals the Gedae RTK that the primitive has not completed its execution. The

primitive Apply method may need to record the fact that the embPause was

called so that when the primitive is called again, it can continue execution from

the point at which it stopped.

Examples

See embResume

Example Primitives

See embResume

See Also

embResume

 9

7

embPrintChar

Synopsis

void embPrintChar(int size,char *buf);

Box Types

All

Methods

All

Description

The function embPrintChar prints a buffer buf having size characters to the

terminal.

 9

8

embProcStats

Synopsis

void embProcStats(double *total_time,

 double *exec_time);

Box Types

All

Methods

All

Description

The function embProcStats sets the parameter’s total, which is the total time

in seconds since the last call to embProcStats. It also returns the parameter’s

exec, which is the time that the RTK spent running primitives since the last call to

embProcStats.

Examples

double total_time;

double exec_time;

double percentage_utilization;

double idle_time;

embProcStats(&total_time,&exec_time);

idle_time = total-exec;

percentage_utilization = 100*exec_time/total_time;

printf("The processor was utilized %4.1f%%\n"

 "of the time over the last %g seconds\n”

 "and was idle for %g seconds.\n",

 percentage_utilization,

 total_time,

 idle_time);

Example Primitives

embeddable/stream/void/void_procstats – outputs the percentage

processor utilization since the last call to the primitive.

 9

9

embResume

Synopsis

void embResume(void *thread, Schedule s);

Box Types

static

cyclic

Methods

None – function called from interrupt handler, thread or callback registered by

primitives Start method.

Description

The embResume function resumes a schedule previously paused by embPause.

To use embResume the primitive must register an interrupt handler, thread or

callback that will call embResume whenever the device moves into the ready

state. When a primitive’s Apply method detects that a device is not ready the

Apply method calls embPause putting the primitive into the paused state.

Then when the device becomes ready the interrupt handler calls embResume,

which puts the primitive back in the ready state.

In order to resume a schedule, the embResume function must be passed the

values returned by embSelf and embGetSchedule. These functions must be

called from the primitives Start method and recorded in order to be passed to

the callback or interrupt handler that will call embResume. Calling embResume

when embPause was not previously called has no effect.

Examples

The following code shows how a typical input/output device can be made non-

polling using embPause and embResume. We hypothesize some functions

for a device as follows:

void *startDevice(void)

void registerDeviceCallback(

 void *handle,

 void (*callback)(void *),

 1

0

0

 void *calldata);

int deviceReady(void *handle);

The startDevice function returns a device handle. registerDeviceCallback

registers a callback function that will be called any time the device becomes

ready. deviceReady is a function that returns true whenever the device is ready,

that is, has data available to read. With these functions defined, we can now

present our hypothetical device handler:

Name: device_handler

Type: static

Input: {

 ...device parameters...

}

Local: {

 void *handle;

 CallData cd;

}

Output: {

 stream float out; /* output data stream from device

*/

}

Include: {

 typedef struct {

 Schedule s;

 void *thread;

 } CallData;

 static void callback(CallData cd) {

 embResume(cd->thread,cd->s);

 }

}

Start: {

 handle = startDevice();

 cd->s = embGetSchedule();

 cd->thread = embSelf();

 registerDeviceCallback(handle,callback,cd);

}

Apply: {

 if (deviceReady(handle)) {

 ... get data from device and

 place in output data stream ...

 } else {

 1

0

1

 embPause();

 }

}

In the above example, the Start method fills in the CallData structure cd-

>s and cd->thread elements by calling embGetSchedule and embSelf.

It then registers the callback routine callback that is called when the device

becomes ready. In the Apply method, if the device is ready, then the Apply

method runs to completion, and if not, it calls embPause, which puts the

primitive and its associated schedule in the paused state. The primitive will not

execute again until the device becomes ready. When the device becomes ready,

the callback routine calls embResume, thereby making the device ready.

It might seem that if embResume is called between the deviceReady

returning 0 and the call to embPause that the embResume call might be

missed. If the embResume were missed the primitive would go into the paused

state with no chance to recover. This situation is avoided because when

embResume is called before embPause the RTK records the call. The next call

to embPause will see that embResume was called and cause the primitive to go

into a polling state instead of going into the paused state – much as if

embSuspendRetry had been called instead. Only after a second call to

embPause will the primitive go into the paused state.

Example Primitives

embeddable/stream/audio/audioIn_nt – audio input device for

windows PCs

vfg/vfg_video_in – video input device coded using the Gedae vfg library.

See Also

embPause, embGetSchedule, embSelf, embSuspendRetry

 1

0

2

embSbAlloc

Synopsis

void *embSbAlloc(char *type, int bytes, int users);

Box Types

static

cyclic

Methods

Apply

Description

The embSbAlloc function is designed for use in Apply methods to create

pointer values that are to be passed out of the Apply method to downstream

primitives. It will be the responsibility of the downstream primitives to free the

pointers using embSbFree,, to make copies of the pointers using embSbCopy

or forward the pointers using embSbForward. The embSbAlloc takes the

memory type as its first parameter, and the number of bytes to allocate as its

second parameter. (The memory type is passed to embCalloc, which is called

by embSbAlloc). The final parameter is users, which is the number of users

of this pointer. If users is set to N, then N calls to embSbFree must be made

before the pointer is actually freed using embFree.

The embSbAlloc type field is usually set by querying the type of the output

using the built-in function mem_type. The users field should always be set by

querying how many destination primitives are using the built-in function

n_dests.

Examples

Name: vv_Float1d

Type: static

Input: {

 stream float in[n,MAX];

}

Output: {

 stream Float1dRec out;

}

 1

0

3

Include: {

#include <valuetypes.h>

}

Apply: {

 int ndests = n_dests(out);

 char *memtype = mem_type(out);

 if (ndests) {

 int i;

 for (i=0; i<granularity; i++) {

 int bytes = n[i]*sizeof(float);

 out[i].data = embSbAlloc(memtype,bytes,ndests);

 out[i].n = n[i];

 embMemcpy(out[i].data,&in[i*MAX],bytes);

 }

 }

}

See Also

embSbFree, embSbCopy, embSbForward, embCalloc, embFree,

mem_type, n_dests

 1

0

4

embSbFree

Synopsis

void embSbFree(void *buf);

Box Types

static

cyclic

Methods

Apply

Description

The function embSbFree frees a shared pointer allocated with embSbAlloc.

The embSbFree decrements the use count of the pointer and only calls

embFree on the pointer when the use count goes to zero.

Examples

Name: Float1d_magn

Type: static

Input: {

 stream Float1dRec in;

}

Output: {

 stream float out;

}

Include: {

#include <valuetypes.h>

#include <math.h>

}

Apply: {

 int i;

 for (i=0; i<granularity; i++) {

 Float1d x = &in[i];

 float *data = x->data;

 int j;

 1

0

5

 float sum = 0;

 for (j=0; j<x->n; j++) {

 sum += data[j]*data[j];

 }

 out[i] = sqrt(sum);

 embSbFree(data);

 }

}

See Also

embSbAlloc, embSbCopy, embSbForward, embFree

 1

0

6

embSbCopy

Synopsis

void *embSbCopy(void *buf, int users);

Box Types

static

cyclic

Methods

Apply

Description

The embSbCopy function returns a shared pointer the same size and memory

type as the input pointer buf. If the use counter of the input buffer is 1, then

embSbCopy returns the input buffer and sets the new use count of this buffer to

users. If the use count of the input buffer is greater than 1, then the

embSbCopy creates a new buffer and sets its user counter to users. The output

buffer may actually be the same pointer as the input buffer, so the algorithm must

allow the input buffer to be modified in-place. If the algorithm can only be

performed out-of-place, then the output buffer should be created with

embSbAlloc. After the algorithm has run, the input buffer should be freed

using embSbFree.

Examples

In the following example, embSbCopy creates an output data buffer the same

size as the input data buffer.

Name: Float1d_sqrt

Type: static

Input: {

 stream Float1dRec in;

}

Output: {

 stream Float1dRec out;

}

Include: {

#include <math.h>

 1

0

7

}

Apply: {

 int i;

 for (i=0; i<granularity; i++) {

 Float1d x = &in[i];

 Float1d y = &out[i];

 float *indata = x->data;

 float *outdata = embSbCopy(indata,n_dests(out));

 int j;

 float sum = 0;

 y->n = x->n;

 y->data = outdata;

 for (j=0; j<x->n; j++) {

 outdata[j] = sqrt(indata[j]);

 }

 }

}

An example of an out-of-place version of the Apply method that uses

embSbAlloc and embSbFree is given below:

Apply: {

 int i;

 for (i=0; i<granularity; i++) {

 Float1d x = &in[i];

 Float1d y = &out[i];

 float *indata = x->data;

 char *type = mem_type(out);

 float *outdata = embSbAlloc(type,n_dests(out));

 int j;

 float sum = 0;

 y->n = x->n;

 y->data = outdata;

 for (j=0; j<x->n; j++) {

 outdata[j] = sqrt(indata[j]);

 }

 embSbFree(in);

 }

}

See Also

embSbFree, embSbAlloc, embSbForward

 1

0

8

embSbForward

Synopsis

void embSbForward(void *buf, int users);

Box Types

static

cyclic

Methods

Apply

Description

The embSbForward function forwards the pointer buf from the input to the

output. This function should be used only if the pointer is being forwarded

without modification. The parameter users should be set to the number of output

destinations using n_dests(out). The use count of the buffer is incremented

by users-1. If the number of destinations is 0, then we may actually decrement

the use count by 1, and if the use count goes to zero, then embFree will be

called on the buffer.

Examples

Name: Float1d_demux

Type: static

Input: {

 stream Float1dRec in(m);

}

Output: {

 stream Float1dRec [m]out;

}

Apply: {

 int i,j;

 for (i=0; i<granularity; i++) {

 for (j=0; j<m; j++) {

 Float1d outj = out[j];

 outj[i] = *(in++);

 embSbForward(outj[i].data,n_dests(out[j]));

 }

 }

}

 1

0

9

See Also

embSbAlloc, embFree, embSbCopy, n_dests

 1

1

0

embSbBytes

Synopsis

int embSbBytes(void *buf);

Box Types

static

cyclic

Methods

Apply

Description

The function embSbBytes returns the number of bytes allocated for a shared

memory buffer by embSbAlloc.

See Also

embSbAlloc

 1

1

1

embSbType

Synopsis

char *embSbType(void *buf);

Box Types

static

cyclic

Methods

Apply

Description

The embSbType function returns the name of the memory block passed to

embSbAlloc when the buffer was created.

See Also

embSbAlloc, embSbForward, mem_type

 1

1

2

embSelf

Synopsis

void *embSelf(void);

Box Types

static

cyclic

Methods

Start

Description

The embSelf parameter returns the thread of execution that can be passed to

embResume. The embSelf function is BSP specific and is designed in

conjunction with the BSP functions embGoToSleep and embWakeup. The

function embSelf often returns a 0, as many BSPs do not require knowing the

execution thread in order to wake up the process.

Examples

See embResume

Example Primitives

See embResume

See Also

embPause, embResume, embGetSchedule

 1

1

3

embSetGranularity

Synopsis

void embSetGranularity(int granularity);

Box Types

static

cyclic

Methods

Apply

Description

The embSetGranularity function is called in conjunction with

embNoteProgress to indicate how much progress a primitive made through

the granularity loop during execution of its Apply method. The

embSetGranularity function has no effect on behavior and is only useful for

debugging purposes. For example, the user of the Gedae Trace Table can query

any primitive execution displayed on the table for its execution granularity. If

during the execution being queried the Apply method called

embSetGranularity(10), then the granularity displayed to the user is the

value 10. If the Apply method did not call embSetGranularity during the

execution, then the value displayed to the user is the granularity of the

Apply method.

Examples

see embNoteProgress

See Also

embNoteProgress

 1

1

4

embSetPeriod

Synopsis

void embSetPeriod(int sec, int nsec);

Box Types

static

cyclic

Methods

All

Description

The embSetPeriod function sets a primitive’s static schedule to run with a

periodicity in seconds of sec+1e-9*nsec. When either sec or nsec are non-

zero, embSetPeriod sets the scheduling policy to PERIODIC and the

scheduling units to CLOCK_TIC. When sec and nsec are both zero,

embSetPeriod sets the scheduling policy to DATAFLOW.

Examples

In the following example, embSetPeriod is called in both the Start and

Apply methods. A possible modification of this function would be to remove

the Apply method, in which case, the period for the schedule could not be

changed once the graph has been reset and is running.

Name: void_rate

Type: static

Input: {

 stream void in;

 float T;

}

Start: {

 int sec = T;

 int nsec = (T-sec)*1e9;

 embSetPeriod(sec,nsec);

}

Apply: {

 1

1

5

 int sec = T;

 int nsec = (T-sec)*1e9;

 embSetPeriod(sec,nsec);

}

Example Primitives

embeddable/void/void_rate – sets the period of a primitive to run every

T seconds.

See Also

embGetPeriod

 1

1

6

embSetPriority

Synopsis

void embSetPriority(int priority);

Box Types

static

cyclic

Methods

Start

Reset

Apply

Description

The embSetPriority function sets the priority of the primitive’s static

schedule. When multiple schedules are ready to run, the schedules with the

highest priority will always run first. By default all schedule priorities are set to

0, thereby insuring that schedules set to priority 1 will run, when ready, before

any other schedule with unset priorities.

Care should be taken when calling embSetPriority so that the calling

schedule will not run to the exclusion of all other schedules. Such runaway

behavior can occur when the schedule can run asynchronously from the other

schedules (no data flow to any other schedules), and when the schedule has not

been set to run periodically.

A schedule’s priority can be changed dynamically by the Apply method or on

segment boundaries by the Reset method, but it is most typically set once at

start-up by the primitives Start method.

See Also

embSetPeriod, embGetPriority

 1

1

7

embSuspendQueueWait

Synopsis

void embSuspendQueueWait(char *reason);

Box Types

static

cyclic

Methods

Apply

Description

If a primitive Apply method determines that the Apply method cannot complete

execution until one of multiple nondet input or output queues becomes ready, then

the primitive should call embSuspendQueueWait. The function

embSuspendQueueWait puts the primitive in the queue-wait state. The

primitive will become ready to fire when data arrives on any input or is consumed

from any output.

There are two major ways nondet queues are used. In the deterministic method,

the primitives with nondet inputs or outputs will call the amount function to say

how much data is required on each input or how much space is required on each

output. If any call to an amount function fails, then the primitive must exit and it

will only be called again when all the queues for which amount was called have

the amount of data specified. By contrast, the primitive that calls

embSuspendQueueWait is advertising the fact that it may be ready to run

when any input gets new data or any output gets more space. This method is

nondeterministic as the order of arrival of data on the input queues (which may be

affected by processor speeds in a distributed application) may change the order in

which data is processed.

Examples

The following example shows how an uncontrolled merge is implemented using

the embSuspendQueueWait function. In this code, the merge function is

ready to fire when there is data available on any input. The variable T is the total

amount of data available on all the input queues and is calculated by summing the

values of avail(in[i]) for all of the family members of in. If some data is

available, then the primitive copies data from its inputs to the output and produces

 1

1

8

T tokens on the output. If T is zero, however, the primitive goes into the queue-

wait state by a call to embSuspendQueueWait. When any new data arrives

on any of the input queues, the primitive is put back in the ready state and will be

run.

Name: umergef

Type: static

Input: {

 nondet stream float [F]in;

}

Output: {

 dynamic stream float out(F);

}

Apply: {

 int T = 0; /* total data available on all inputs */

 int f;

 /* find the ready input queues and determine T */

 for (f=0; f<F; f++) {

 int ain = avail(in[f]);

 T += ain; /* update T */

 if (ain) amount(in[f],ain); /* prepare in[f] */

 }

 if (T) {

 /* then the box is ready to fire */

 for (f=0; f<F; f++) { /* for each input */

 int ain = avail(in[f]);

 e_vmov(in[f],1,out,1,ain);

 out+=ain;

 consume(in[f],ain);

 }

 produce(out,T);

 } else {

 embSuspendQueueWait("waiting for input");

 }

}

Example Primitives

embeddable/stream/logic/umergef

See Also

amount, avail

 1

1

9

embSuspendRetry

Synopsis

void embSuspendRetry(char *reason);

Box Type

static

cyclic

Methods

Apply

Description

The function embSuspendRetry notes that a primitive has not completed

executing and makes a note of the reason that is passed in the reason parameter.

The schedule that a primitive is part of is put into the pending retry state and will

be executed again once the scheduling criteria for this schedule to retry has been

met. The default policy is that every other schedule that is ready to fire will be

given the chance before the schedule calling embSuspendRetry is called.

Using embSuspendRetry is equivalent to polling on the primitive to find out

when it is ready. This polling behavior is in contrast to the interrupt driven

capability provided by embPause and embResume.

Examples

The following code shows a polling input device. In this example, the primitive is

required to run at a granularity of 1, and the output interpolate value is set to

BufferSize. As a result, the primitive will always produce BufferSize tokens on

the output. This explicit setting of the number of tokens produced by the output is

typical of I/O primitives, which then dictates the granularity of the boxes attached

to them.

For this example, we hypothesize that there are functions:

1. initializeDevice which returns a DeviceHandle initialized to have internal

storage of BufferSize.

2. deviceReady which returns true when BufferSize tokens are available in the

input device.

3. copyDataFromDevice which will copy BufferSize tokens from the buffer

represented by dh to the output pointer out.

 1

2

0

Name: InputDevice

Type: static

Input: {

 char Name[N];

 int BufferSize;

}

Local: {

 DeviceHandle dh;

}

Output: {

 stream float out(BufferSize);

}

Start: {

 dh = initializeDevice(Name,BufferSize);

}

Apply: {

 if (granularity != 1) {

 embTerminateError(“expected granularity of 1”);

 }

 if (deviceReady(dh)) {

 /* copy BufferSize tokens from dh to out */

 copyDataFromDevice(dh,out);

 } else {

 embSuspendRetry(“input device not ready”);

 }

}

While the above is a typical example of an I/O primitive, there are many other

ways they may be developed. The main purpose of this example is to illustrate a

typical use of embSuspendRetry and not to exhaustively describe I/O

primitive creation.

Example Primitives

Input/Output devices provided by Gedae have all been implemented using

embPause/embResume so there are currently no examples in the Gedae library.

See Also

embPause, embResume

 1

2

1

embTerminateError

Synopsis

void embTerminateError(char *reason);

Box Types

static

cyclic

Methods

Start

Reset

Apply

Description

The embTerminateError function indicates an exceptional condition has

occurred and stops the graph from executing.

Examples

See embTerminateNormal

Example Primitives

embeddable/stream/source/read1

See Also

 1

2

2

embTerminateNormal

Synopsis

void embTerminateNormal(char *reason);

Box Types

static

Methods

Apply

Description

A call to the function embTerminateNormal signals that the calling primitive

and the calling primitive’s schedule is terminated. The dynamic scheduler will

never schedule the calling primitive and its associated schedule again.

Examples

The following primitive reads the file named by Name until it reaches the end-of-

file. At that time it calls embTerminateNormal to indicate that the primitive

terminated in an expected fashion. In the Start method,

embTerminateError is called, which indicates a fatal unexpected error that

stops the graph from executing.

Name: read1

Type: static

Input: {

 char Name[N];

}

Local: {

 int fd;

}

Output: {

 stream float out;

}

Start: {

 fd = embFOpen(Name,"rb");

 if (!fd) {

embTerminateError("file open failed");

 }

}

 1

2

3

Apply: {

 int nread;

 nread = embFRead(fd,granularity,sizeof(float),out);

 if (numread < granularity) {

 embTerminateNormal("end of file reached");

 }

}

Terminate: {

 if (fd) {

 embFClose(fd);

 }

}

Example Primitives

embeddable/stream/source/read1

See Also

embTerminateError

 1

2

4

embUserEvent

Synopsis

void embUserEvent(int number);

Box Types

static

Methods

Apply

Description

The embUserEvent function adds a time-stamped trace event with that has

recorded with it the user passed number. These events are visible on the trace

table and the user can also set a break point on these events.

Examples

The following code fragment shows a user event being conditionally added to the

trace table when a variable x takes on the value of 5.

Apply: {

…

 if (x == 5) {

 embUserEvent(1);

 }

…

}

Here is a more extended example of how this function and other associated

functions can be used:

The prim function in the following graph creates each type of user event:

 1

2

5

The Apply method for prim is:

Apply: {

 embUserEvent(1);

 embUserEvent(2);

 embUserBeginEvent(3);

 embUserEndEvent(3);

 embUserIntEvent(4,cnt);

 embUserBeginEvent(9);

 embUserFloatEvent(5,3.7);

 embUserFloatEvent(6,3.7);

 if (cnt > 10000) {

 embUserEvent(7);

 }

 if (cnt > 10001) {

 embUserEvent(8);

 }

 cnt++;

 embEndUserEvent(9);

}

The firing of prim produces the following trace table.

 1

2

6

The primitive firing is the black bar. Instantaneous events are the white square

within the black rectangle. Interval events are the slightly larger red rectangles.

Clicking on the second white dot in one of the firings of prim shows the

following display with more detailed information about the user events. From

this display the user can read the even number, the elapse time (if it is an interval

event) and the events value (if any).

Example Primitive

test/userevents/prim

See Also

embUserBeginEvent, embUserEndEvent, embUserIntEvent,

embUserFloatEvent

 1

2

7

embUserBeginEvent

Synopsis

void embUserBeginEvent(int number);

Box Types

static

Methods

Apply

Description

The embUserBeginEvent function marks the beginning of a numbered

interval event. This function is always paired with a following call to

embUserEndEvent that is passed the same number. One event is recorded in

the trace table event buffer that contains the event number, the event start time

and the event stop time.

Currently intervals defined by embUserBeginEvent and

embUserEndEvent can not overlap or be nested. However calls to any of the

instantaneous event functions (embUserEvent, embUserFloatEvent or

embUserIntEvent) can be made between calls to embUserBeginEvent

and embUserEndEvent.

Examples

The following code fragment shows how embUserBeginEvent and

embUserEndEvent can be used.

Apply: {

 …

 embUserBeginEvent(3);

 … code to be timed …

 embUserEndEvent(3);

…

}

See embUserEvent for a more extended example of the use of this function.

Example Primitive

test/userevents/prim

 1

2

8

See Also

embUserEvent, embUserEndEvent

 1

2

9

embUserEndEvent

Synopsis

void embUserEvent(int number);

Box Types

static

Methods

Apply

Description

The embUserEndEvent function marks the end of a numbered interval event.

This function is always paired with a preceding call to embUserBeginEvent

that is passed the same number. One event is recorded in the trace table event

buffer that contains the event number, the event start time and the event stop time.

Currently intervals defined by embUserBeginEvent and

embUserEndEvent can not overlap or be nested. However calls to any of the

instantaneous event functions (embUserEvent, embUserFloatEvent or

embUserIntEvent) can be made between calls to embUserBeginEvent

and embUserEndEvent.

Examples

The following code fragment shows how embUserBeginEvent and

embUserEndEvent can be used.

Apply: {

 …

 embUserBeginEvent(3);

 … code to be timed …

 embUserEndEvent(3);

…

}

See embUserEvent for a more extended example of the use of this function.

Example Primitive

test/userevents/prim

 1

3

0

See Also

embUserEvent, embUserBeginEvent

 1

3

1

embUserFloatEvent

Synopsis

void embUserFloatEvent(int number, float value);

Box Types

static

Methods

Apply

Description

The embUserFloatEvent works exactly like embUserEvent except that

the recorded event contains an additional floating point value. This floating point

value can be examined on the trace table and can be used when setting break

points.

Examples

The following code fragment shows how embUserFloatEvent can be used.

Local:

 float x;

}

Apply: {

 …

 embUserFloatEvent(4,x);

}

The above code fragment shows the embUserFloatEvent function being

used to register the value of a primitive’s Local variable x.

See embUserEvent for a more extended example of the use of this function.

Example Primitive

test/userevents/prim

See Also

embUserEvent

 1

3

2

embUserIntEvent

Synopsis

void embUserEvent(int number);

Box Types

static

Methods

Apply

Description

The embUserIntEvent works exactly like embUserEvent except that the

recorded event contains an additional integer value. This value can be examined

on the trace table and can be used when setting break points.

Examples

The following code fragment shows how embUserIntEvent can be used.

Local:

 int x;

}

Apply: {

 …

 embUserIntEvent(4,x);

}

The above code fragment shows the embUserIntEvent function being used to

register the value of a primitive’s Local variable x.

See embUserEvent for a more extended example of the use of this function.

Example Primitive

test/userevents/prim

See Also

embUserEvent

 1

3

3

embWallclock

Synopsis

int embWallclock(int *sec);

Box Types

All

Methods

All

Description

The embWallclock function returns the wallclock time in seconds and

nanoseconds. The nanoseconds are returned in the embWallclocks return

value and the seconds are returned in the sec parameter. The embWallclock

is used to measure elapse time between calls. The absolute meaning of the times

(for example, seconds since Jan 1, 1975) is BSP dependent. The

embWallclock function is used to collect trace events and processor statistics

as returned by embProcStats.

Examples

The following code fragment can be used to time a section of code:

int start_sec, stop_sec;

int start_nsec, stop_nsec;

start_nsec = embWallclock(&start_sec);

.. code to be timed ..

stop_nsec = embWallclock(&stop_sec);

printf("Ellapse time of execution is = %g seconds\n",

(stop_sec-start_sec) + 1e-9*(stop_nsec-start_nsec);

See Also

embProcStats

 1

3

4

Unmapped to Mapped Memory Transfer
Functions

Synopsis

void e_putu (void *mapped, unsigned long unmapped, int bytes);

void e_getu (void *mapped, unsigned long unmapped, int bytes);

void e_putu_nw (void *mapped, unsigned long unmapped, int bytes,

 int wait_handle);

void e_getu_nw (void *mapped, unsigned long unmapped, int bytes,

 int wait_handle);

int e_putu_cw (void *mapped, void *unmapped, int bytes);

int e_getu_cw (void *mapped, void *unmapped, int bytes);

void e_putmu (void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, DmaListElem

dle);

void e_getmu (void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, DmaListElem

dle);

void e_putmu_nw(void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, int

wait_handle,

 DmaListElem dle);

void e_getmu_nw(void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, int

wait_handle,

 DmaListElem dle);

int e_putmu_cw(void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, DmaListElem

dle);

int e_getmu_cw(void *mapped, unsigned long unmapped,

 int R, int C_mapped, int C_unmapped, DmaListElem

dle);

void e_wait (int wait_handle);

int e_cw (void);

Description

Primitives that have declared inputs and outputs unmapped can only access the

data in these streams using the primitive handling functions described below:

Unmapped memory refers to integer handles to allocated memory that a processor

can not directly access using normal pointer dereferencing, but can only be access

through the above function interface. There are 12 functions that are used to

move data to and from unmapped memory. These function names have the form:

e_(put|get)(u|mu)[(_nw|_cw)]

 1

3

5

Where the meaning of each part of the function name is:

put - Move mapped memory to unmapped memory

get - Move unmapped memory to mapped memory

u - Move bytes of contiguous data between memories. Parameter mapped

indicates the beginning address of mapped memory and parameter

unmapped indicates the beginning address of mapped memory.

mu - Move a matrix in mapped memory to/from a submatrix tile in unmapped

memory. Parameter mapped indicates the address of a tile of size

RxC_mapped in mapped memory and the parameter unmapped indicate

the address of a matrix of size R*C_unmapped in umapped memory.

_nw - Begin the transfer and do not wait for the transfer to complete. To wait for

the transfer completion at a later point call e_wait(wait_handle)

_cw - Begin the transfer and do not wait for the transfer to complete. Return an

integer wait handle. To wait for the transfer completion at a later point

call the e_wait function on the _cw functions return value. If neither the

_nw or _cw prefix is added then the function waits for the transfer to

complete.

In the following we refer to functions that have a component as a function of that

component type. For example the function e_putmu_nw is a put function, an mu

function and an nw function.

The parameters to the above functions are:

mapped - a pointer to the region of mapped memory to/from which data is to be

moved.

unmapped - a long integer value representing a pointer to the unmapped

memory region to/from which data is to be moved. The value unmapped +

N represents the memory address that is N bytes offset from unmapped.

bytes - for u functions the number of bytes to transfer

R - for mu functions the number of rows to be moved between mapped and

unmapped memory.

C_mapped - for mu functions the number of columns in the mapped matrix

C_unmapped - for mu functions the number of columns in the unmapped matrix.

C_unmapped >= C_mapped.

wait_handle - for nw functions the handle returned by any of the cw functions

(including e_cw) that the eventual call to e_wait will be passed to wait for

completion of the transfers.

dle - A memory area of size R*sizeof(DmaListElemRec) that must is

used as working memory of the mu functions. Typically this area is set in a

primitives local section as:

Local: {

 1

3

6

 DmaListElemRec dle[R];

}

In addition to the 12 functions for moving data between mapped and unmapped

memory there are two additional functions that are used to allow programs to

synchronize execution with transfer completion. These are the e_cw function that

creates a wait_handle and the e_wait function that waits for completion of

all functions whose transfers are associated with that wait handle. The e_cw

function and all of cw functions return a wait_handle that can be passed to the

functions ending in nw and to the e_wait function.. The program can wait for

the completion of the cw function creating the wait handle and all of the nw

functions passed the wait handle by calling e_wait(wait_handle).

Return value

The cw functions return an integer wait handle that can be passed to any of the nw

functions or the e_wait function.

Limitations

3. On the Cell/B.E. the unmapped parameter can only be a 32 bit unsigned long

value.

4. There is no guarantee that the _cw functions return a unique wait_handle. As a

result a call to e_wait on a particular wait_handle may end up waiting for more

functions to complete than anticipated by the user.

5. The current Cell BSP also uses wait handles for send/recv boxes but these are

generated differently than the wait handles for the e-functions. This may result in

the inefficiency of an e_wait call waiting for both the e-function to complete and a

BSP communication to complete when it should only wait for the e-function.

6. While the mu functions allow a submatrix from an unmapped matrix to be moved

to a mapped matrix using list dma the converse can only be done by a series of

calls to u functions.

7. As implemented on the Cell/B.E. the functions run most efficiently if the mapped

and unmapped memory have the same 16 byte alignment. Otherwise an

additional copy between SPE memory and a temporary buffer is performed to

allow aligned transfers between the temporary buffer and unmapped memory.

8. On the Cell/B.E. list DMA is only used if the column lengths are a multiple of 16

bytes.

 1

3

7

Examples

The following examples show how the cw and nw functions can be used. In the

example assume that unmapped has been initialized to an unmapped pointer value

of size N*2*sizeof(float). The following data is declared for all the

examples.

unsigned long unmapped;

float in1[N];

float in2[N];

float out1[N];

float out2[N];

int wh1;

int wh2;

In the first example, we kick off two transfers and wait for both to complete.

wh1 = e_cw();

e_putu_nw(in1,unmapped,N*sizeof(float),wh1);

e_putu_nw(in2,unmapped+N*sizeof(float),N*sizeof(float),wh1);

e_wait(wh1);

The second example is the same as above, but we use the e_putu_cw function

to generate the wait handle.

wh1 = e_putu_cw(in1,unmapped,N*sizeof(float));

e_putu_nw(in2,unmapped+N*sizeof(float),N*sizeof(float),wh1);

e_wait(wh1);

In the final example, we use double buffering to overlap processing of unmapped

memory with fetching unmapped memory.

/* initialization get two buffers */

wh1 = e_getu_cw(out1,unmapped,N*sizeof(float));

wh2 = e_getu_cw(out2,unmapped+N*sizeof(float),N*sizeof(float));

/* process next N-2 buffers */

for (i=0; i<N-2; i+=2) {

 e_wait(wh1);

 ... process out1 ...

 wh1 = e_getu_cw(out1,unmapped,N*sizeof(float));

 e_wait(wh2);

 ... process out2 ...

 wh2 = e_getu_cw(out2,unmapped+N*sizeof(float),N*sizeof(float));

}

/* process final 2 buffers */

e_wait(wh1);

... process out1 ...

e_wait(wh2);

... process out2 ...

 1

3

8

Data Flow Parameter Functions

Any expressions that can be parsed by in the Gedae symbolic expression language

can be used to express data flow parameters and dimensions in the Input, Output

and Local sections of a primitive. These expressions are based on C syntax with a

few functional extensions. This section presents some of the more important

functions that can be used to describe dataflow.

 1

3

9

part

Synopsis

int part(int f, int F, int N);

Description

The function call part(f,F,N) returns the value (f+1)*N/F – f*N/F; This function

has the property that it divides N into as nearly equal as possible values that sum

to N. For example if F = 8and N is equal to 35 then the values of part(f,F,N) take

on the values 4,4,5,4,4,5,4,5 as f takes on the values 0,1,2,3,4,5,6,7.

The part function is available both to the dataflow expression parser and in the

primitives Apply method. Note however that summing part(i,F,N) from i = 0..f

yields f*N/F. This expression can be used in the Apply method of a primitive to

calculate the offset of the fth part of N.

Example

Name: mzt_rpart

Type: static

Input: {

 stream float in_re[Rt:R][Ct:C];

 stream float in_im[Rt:R][Ct:C];

}

Output: {

 inplace pointer stream float

[f:F]out_re[part(f,F,Rt):R][Ct:C] = in_re;

 inplace pointer stream float

[f:F]out_im[part(f,F,Rt):R][Ct:C] = in_im;

}

Apply: {

 int f;

 for (f=0; f<F; f++) {

 int Roff_C = (f*Rt/F)*C;

 forward(out_re[f],in_re,in_re+Roff_C,1);

 forward(out_im[f],in_im,in_im+Roff_C,1);

 }

}

 1

4

0

sum

Synopsis

int sum(int *X, int N);

Description

The function sum returns the sum of the vector elements X[i] as i ranges from 0

to N-1. For example if X[] = {1,3,9,12,4} then sum(X,3) = 13

and sum(X,5) = 29.

Limitation

The function sum may only be used in the Input, Output and Local sections

of the primitive. It is not available in the primitives Apply method.

Example

In the following example the sum function is used to indicate that the output row

tile size is the sum of the family of input row tiles sizes.

Name: mt_rnconcat

Type: static

Input: {

 pointer stream float [f:F]in[Rs[f]:R][Cs:C];

}

Output: {

 inplace stream float out[sum(Rs,F):R][Cs:C] = in;

}

Apply: {

 int f;

 int Rsum = 0;

 for (f=0; f<F; f++) {

 set_ptr(in[f],out+Rsum*C);

 Rsum += Rs[f];

 }

}

